
CALLNAT

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S A G A N P I F B D T L C G O yes yes

Related Statements: DEFINE DATA PARAMETER | FETCH | PERFORM

Function
The CALLNAT statement is used to invoke a Natural subprogram for execution.

When the CALLNAT statement is executed, the execution of the invoking object (that is, the object containing the
CALLNAT statement) will be suspended and the invoked subprogram will be executed. The execution of the
subprogram continues until either its END statement is reached or processing of the subprogram is stopped by an
ESCAPE ROUTINE statement being executed. In either case, processing of the invoking object will then continue
with the statement following the CALLNAT statement.

Note:
A Natural subprogram can only be invoked via a CALLNAT statement; it cannot be executed by itself.

Subprogram Name - operand1
As operand1, you specify the name of the subprogram to be invoked. The name may be specified either as a constant
of 1 to 8 characters, or - if different subprograms are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 8.

The subprogram name may contain an ampersand (&); at execution time, this character will be replaced by the
current value of the system variable *LANGUAGE. This makes it possible, for example, to invoke different
subprograms for the processing of input, depending on the language in which input is provided.

Parameters - operand2
If parameters are passed to the subprogram, the structure of the parameter list must be defined in a DEFINE DATA
PARAMETER statement. The parameters specified with the CALLNAT statement are the only data available to the
subprogram from the invoking object.

1Copyright Software AG 2002

CALLNATCALLNAT

By default, the parameters are passed "by reference", that is, the data are transferred via address parameters, the
parameter values themselves are not moved.
However, it is also possible to pass parameters "by value", that is, pass the actual parameter values. To do so, you
define these fields in the DEFINE DATA PARAMETER statement of the subprogram with the option BY VALUE
or BY VALUE RESULT as described under Parameter-Data-Definition in the section DEFINE DATA.

If parameters are passed "by reference" the following applies: The sequence, format and length of the
parameters in the invoking object must match exactly the sequence, format and length of the DEFINE DATA
PARAMETER structure in the invoked subprogram. The names of the variables in the invoking object and the
invoked subprogram may be different.
If parameters are passed "by value" the following applies: The sequence of the parameters in the invoking
object must match exactly the sequence in the DEFINE DATA PARAMETER structure of the invoked
subprogram. Formats and lengths of the variables in the invoking object and the subprogram may be different;
however, they have to be data transfer compatible (see the corresponding table in the Natural Reference
documentation). The names of the variables in the invoking object and the subprogram may be different.
If parameter values that have been modified in the subprogram are to be passed back to the invoking object, you
have to define these fields with BY VALUE RESULT.
With BY VALUE (without RESULT) it is not possible to pass modified parameter values back to the invoking
object (regardless of the AD specification; see also below).

Note:
With BY VALUE, an internal copy of the parameter values is created. The subprogram accesses this copy and can
modify it, but this will not affect the original parameter values in the invoking object.
With BY VALUE RESULT, an internal copy is likewise created; however, after termination of the subprogram, the
original parameter values are overwritten by the (modified) values of the copy.

For both ways of passing parameters, the following applies:

If a group is specified as operand2, the individual fields contained in that group are passed to the subprogram; that is,
for each of these fields a corresponding field must be defined in the subprogram’s parameter data area.

In the parameter data area of the invoked subprogram, a redefinition of groups is only permitted within a REDEFINE
block.

If an array is passed, its number of dimensions and occurrences in the subprogram’s parameter data area must be the
same as in the CALLNAT parameter list.

Note:
If multiple occurrences of an array that is defined as part of an indexed group are passed with the CALLNAT
statement, the corresponding fields in the subprogram’s parameter data area must not be redefined, as this would lead
to the wrong addresses being passed.

AD=
If operand2 is a variable, you can mark it in one of the following ways:

AD=O non-modifiable

AD=M modifiable

AD=A input only

The default setting for AD= is AD=M.

If operand2 is a constant, AD cannot be explicitly specified. For constants AD=O always applies.

Copyright Software AG 20022

CALLNATAD=

AD=M

By default, the passed value of a parameter can be changed in the subprogram and the changed value passed back to
the invoking object, where it overwrites the original value.

Exception: For a field defined with BY VALUE in the subprogram’s parameter data area, no value is passed back.

AD=O

If you mark a parameter with AD=O, the passed value can be changed in the subprogram, but the changed value
cannot be passed back to the invoking object; that is, the field in the invoking object retains its original value.

Note:
Internally, AD=O is processed in the same way as BY VALUE (see the section parameter-data-definition in the
description of the DEFINE DATA statement).

AD=A

If you mark a parameter with AD=A, its value will not be passed to the subprogram, but it will receive a value
from the subprogram. This may be useful for remote subprograms executed via Natural RPC in a client/server
environment to reduce the load of data sent. If a subprogram is executed locally, AD=A fields will be reset to empty
before the subprogram is invoked.

For a field defined with BY VALUE in the subprogram’s parameter data area, the invoking object cannot receive a
value. In this case, AD=A only causes the field to be reset to empty before the subprogram is invoked.

nX
Note:
This notation is not available on mainframe computers.

With the notation nX you can specify that the next n parameters are to be skipped (for example, 1X to skip the next
parameter, or 3X to skip the next three parameters); this means that for the next n parameters no values are passed to
the subprogram.
A parameter that is to be skipped must be defined with the keyword OPTIONAL in the subprogram’s DEFINE
DATA PARAMETER statement. OPTIONAL means that a value can - but need not - be passed from the invoking
object to such a parameter.

Other Considerations
A subprogram can in turn invoke other subprograms.

A subprogram has no access to the global data area used by the invoking object.

If a subprogram in turn invokes a subroutine or helproutine, it can establish its own global data area to be shared with
the subroutine/helproutine.

Parameter Transfer with Dynamic Variables
Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
Call-by-reference is possible because the value space of a dynamic variable is contiguous. Call-by-value causes an
assignment with the variable definition of the caller as the source operand and the parameter definition as the
destination operand. Call-by-value result causes additionally the movement in the opposite direction. In case of
call-by-reference both definitions must be DYNAMIC. If only one of them is DYNAMIC, a runtime error is raised.

3Copyright Software AG 2002

nXCALLNAT

In case of call-by-value (result) all combinations are possible. The following table illustrates the valid combinations
of statically and dynamically defined variables of the caller and statically and dynamically defined parameters
concerning the parameter transfer.

Call By Reference

Operand2 of Caller Parameter Definition

 Static Dynamic

Static YES NO

Dynamic NO YES

The formats of the dynamic variables A or B must match.

Call by Value (Result)

Operand2 of Caller Parameter Definition

 Static Dynamic

Static YES YES

Dynamic YES YES

Note:
In case of static/dynamic or dynamic/static definitions, a value truncation may occur according to the data transfer
rules of the appropriate assignments.

Example 1

Invoking Program:

 /* EXAMPLE ’CNTEX1’: CALLNAT
 /**
 /* MAIN PROGRAM ’MAINP1’
 /**
 DEFINE DATA LOCAL
 1 #FIELD1 (N6)
 1 #FIELD2 (A20)
 1 #FIELD3 (A10)
 END-DEFINE
 /**
 CALLNAT ’SUBP1’ #FIELD1 (AD=M) #FIELD2 (AD=O) #FIELD3 ’P4 TEXT’
 /* ...
 END

Invoked Subprogram:

Copyright Software AG 20024

CALLNATExample 1

 /* SUBPROGRAM ’SUBP1’
 /**
 DEFINE DATA PARAMETER
 1 #FIELDA (N6)
 1 #FIELDB (A20)
 1 #FIELDC (A10)
 1 #FIELDD (A7)
 END-DEFINE
 /**
 /* ...
 END

5Copyright Software AG 2002

Invoked Subprogram:CALLNAT

Example 2

Invoking Program:

 /* EXAMPLE ’CNTEX2’: CALLNAT
 /*******************************
 /* MAIN PROGRAM ’MAINP2’
 /*******************************
 DEFINE DATA LOCAL
 1 #ARRAY1 (A3/1:10,1:10)
 END-DEFINE
 CALLNAT ’SUBP2’ #ARRAY1 (2:5,*)
 /* ...

Invoked Subprogram:

 /* SUBPROGRAM ’SUBP2’
 /*******************************
 DEFINE DATA PARAMETER
 1 #ARRAY (A3/1:4,1:10)
 END-DEFINE
 /*******************************
 /* ...
 END

Copyright Software AG 20026

CALLNATExample 2

	CALLNAT
	Function
	Subprogram Name - operand1
	Parameters - operand2
	AD=
	AD=M
	AD=O
	AD=A

	nX
	Other Considerations
	Parameter Transfer with Dynamic Variables
	
	Call By Reference
	Call by Value †Result‡

	Example 1
	Invoking Program:
	Invoked Subprogram:

	Example 2
	Invoking Program:
	Invoked Subprogram:

